Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 813: 151889, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34826491

RESUMO

Mangroves under macro-tidal regimes are global carbon sequestration hotspots but the microbial drivers of biogeochemical cycles remain poorly understood. Here, we investigate the drivers of mangrove microbial community composition across a porewater-creek-estuary-ocean continuum. Observations were performed on the Amazon region in one of the largest mangrove systems worldwide with effective sequestration of organic carbon buried in soils and dissolved carbon via outwelling to the ocean. The potential export to the adjacent oceanic region ranged from 57 to 380 kg of dissolved and particulate organic carbon per second (up to 33 thousand tons C per day). Macro tides modulated microbial communities and their metabolic processes, e.g., anoxygenic phototrophy, sulfur, and nitrogen cycling. Respiration, sulfur metabolism and dissolved organic carbon (DOC) levels were linked to functional groups and microbial cell counts. Total microbial counts decreased and cyanobacteria counts peaked in the spring tide. The microbial groups driving carbon, nitrogen, sulfur and methane cycles were consistent across all spatial scales. Taxonomic groups engaged in sulfur cycling (Allochromatium, Desulfovibrio, and Thibacillus) within mangroves were abundant at all scales. Tidally-driven porewater exchange within mangroves drove a progressive increase of sulfur cycle taxonomic groups and their functional genes both temporally (tidal cycles) and spatially (from mangrove porewater to continental shelf). Overall, we revealed a unified and consistent response of microbiomes at different spatial and temporal scales to tidally-driven mangrove porewater exchange.


Assuntos
Microbiota , Carbono , Estuários , Nitrogênio , Enxofre , Áreas Alagadas
2.
Sci Total Environ ; 760: 143411, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243513

RESUMO

The Great Amazon Reef System (GARS) covers an estimated area of 56,000 km2 off the mouth of the Amazon River. Living rhodolith holobionts are major benthic components of the GARS. However, it is unclear whether environmental conditions modulate the rhodolith microbiomes. Previous studies suggest that environmental parameters such as light, temperature, depth, and nutrients are drivers of rhodolith health. However, it is unclear whether rhodoliths from different sectors (northern, central, and southern) from the GARS have different microbiomes. We analysed metagenomes of rhodoliths (n = 10) and seawater (n = 6), obtained from the three sectors, by illumina shotgun sequencing (total read counts: 25.73 million). Suspended particulate material and isotopic composition of dissolved organic carbon (δ13C) indicated a strong influence of the Amazon river plume over the entire study area. However, photosynthetically active radiation at the bottom (PARb) was higher in the southern sector reefs, ranging from 10.1 to 14.3 E.m-2 day-1. The coralline calcareous red algae (CCA) Corallina caespitosa, Corallina officinalis, Lithophyllum cabiochiae, and Hapalidiales were present in the three sectors and in most rhodolith samples. Rhodolith microbiomes were very homogeneous across the studied area and differed significantly from seawater microbiomes. However, some subtle differences were found when comparing the rhodolith microbiomes from the northern and central sectors to the ones from the southern. Consistent with the higher light availability, two phyla were more abundant in rhodolith microbiomes from southern sites (Bacteroidetes, and Cyanobacteria). In addition, two functional categories were enhanced in southern rhodolith microbiomes (iron acquisition and metabolism, and photosynthesis). Phycobiliprotein-coding genes were also more abundant in southern locations, while the functional categories of respiration and sulfur metabolism were enhanced in northern and central rhodolith microbiomes, consistent with higher nutrient loads. The results confirm the conserved nature of rhodolith microbiomes even under pronounced environmental gradients. Subtle taxonomic and functional differences observed in rhodolith microbiomes may enable rhodoliths to thrive in changing environmental conditions.


Assuntos
Microbiota , Rodófitas , Recifes de Corais , Metagenoma , Fotossíntese , Água do Mar
3.
Sci Total Environ ; 746: 140904, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763595

RESUMO

In the late Quaternary, glacial-interglacial transitions are marked by major environmental changes. Glacial periods in the western equatorial Atlantic (WEA) are characterized by high continental terrigenous input, which increases the proportion of terrestrial organic matter (e.g. lignin, alkanes), nutrients (e.g. iron and sulphur), and lower primary productivity. On the other hand, interglacials are characterized by lower continental contribution and maxima in primary productivity. Microbes can serve as biosensors of past conditions, but scarce information is available on deep-sea sediments in the WEA. The hypothesis put forward in this study is that past changes in climate conditions modulated the taxonomic/functional composition of microbes from deep sediment layers. To address this hypothesis, we collected samples from a marine sediment core located in the WEA, which covered the last 130 kyr. This region is influenced by the presence of the Amazon River plume, which outputs dissolved and particulate nutrients in vast oceanic regions, as well as the Parnaiba river plume. Core GL-1248 was analysed by shotgun metagenomics and geochemical analyses (alkane, lignin, perylene, sulphur). Two clusters (glacial and interglacial-deglacial) were found based on taxonomic and functional profiles of metagenomes. The interglacial period had a higher abundance of genes belonging to several sub-systems (e.g. DNA, RNA metabolism, cell division, chemotaxis, and respiration) that are consistent with a past environment with enhanced primary productivity. On the other hand, the abundance of Alcanivorax, Marinobacter, Kangiella and aromatic compounds that may serve as energy sources for these bacteria were higher in the glacial. The glacial period was enriched in genes for the metabolism of aromatic compounds, lipids, isoprenoids, iron, and Sulphur, consistent with enhanced fluvial input during the last glacial period. In contrast, interglacials have increased contents of more labile materials originating from phytoplankton (e.g. Prochlorococcus). This study provides new insights into the microbiome as climatic archives at geological timescales.


Assuntos
Microbiota , Sedimentos Geológicos , Metagenoma , Oceanos e Mares , Fitoplâncton
4.
Sci Total Environ ; 740: 139556, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32554026

RESUMO

The Campos Basin (100,000 km2) is located on the continental shelf of southeastern Brazil. Despite the significant oil and gas industrial activities underway in the Campos Basin, scarce information is available regarding the hydrocarbon contents and microbial communities in the deep-sea sediments. To gain new insights on these aspects, we first obtained deep-sea sediment samples with different degrees of oil exposure. We obtained samples from a seabed fissure (N = 28), surroundings (250 m to 500 m from the fissure; N = 24), and a control area (N = 4). We used shotgun metagenomics to characterize the taxonomic and metabolic diversity and analyzed biogeochemical parameters (metal and oil concentration) of all samples. The high levels of unresolved complex mixture of hydrocarbons in the fissure indicate a potentially recent petrogenic contribution in these sediments. The fissure area was found to have a higher abundance of hydrocarbonoclastic bacterial genera and hydrocarbon degradation genes. These bacteria may be used as biosensors of sediment contamination. The effects of oil contamination, mainly around the fissure, are less clear at 250 m and 500 m, suggesting that the surroundings may not have been heavily affected by the oil leakage. Our study demonstrates that metagenomics can disclose biosensors for environmental monitoring.


Assuntos
Microbiota , Petróleo , Brasil , Sedimentos Geológicos , Hidrocarbonetos , Metagenômica
5.
Plant Cell ; 32(6): 2020-2042, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303662

RESUMO

Plants produce a vast array of defense compounds to protect themselves from pathogen attack or herbivore predation. Saponins are a specific class of defense compounds comprising bioactive glycosides with a steroidal or triterpenoid aglycone backbone. The model legume Medicago truncatula synthesizes two types of saponins, hemolytic saponins and nonhemolytic soyasaponins, which accumulate as specific blends in different plant organs. Here, we report the identification of the seed-specific transcription factor TRITERPENE SAPONIN ACTIVATION REGULATOR3 (TSAR3), which controls hemolytic saponin biosynthesis in developing M. truncatula seeds. Analysis of genes that are coexpressed with TSAR3 in transcriptome data sets from developing M. truncatula seeds led to the identification of CYP88A13, a cytochrome P450 that catalyzes the C-16α hydroxylation of medicagenic acid toward zanhic acid, the final oxidation step of the hemolytic saponin biosynthesis branch in M. truncatula In addition, two uridine diphosphate glycosyltransferases, UGT73F18 and UGT73F19, which glucosylate hemolytic sapogenins at the C-3 position, were identified. The genes encoding the identified biosynthetic enzymes are present in clusters of duplicated genes in the M. truncatula genome. This appears to be a common theme among saponin biosynthesis genes, especially glycosyltransferases, and may be the driving force of the metabolic evolution of saponins.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Triterpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética
6.
Genet Mol Biol ; 43(1): e20180314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31479095

RESUMO

We present here the genome sequence of Shewanella corallii strain A687 isolated from pufferfish Sphoeroides spengleri (Family Tetraodontidae). The assembly consists of 5,215,037 bp and contains 284 contigs, with a G+C content of 50.3%.

7.
Curr Microbiol ; 77(1): 154-157, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31620811

RESUMO

We report here the novel species to encompass the isolate A649T (=CBAS 716T = CBRVS P1061T) obtained from viscera of the healthy pufferfish Sphoeroides spengleri (Family Tetraodontidae). Genomic taxonomy analysis demonstrates that the novel strain A649T had < 95% average amino acid identity/average nucleotide identity (AAI/ANI) and < 70% similarity of genome-to-genome distance (GGDH) towards its closest neighbors which places A649T into a new Enterovibrio species (Enterovibrio baiacu sp nov.). In silico phenotyping disclosed several features that may be used to differentiate related Enterovibrio species. The nearly complete genome assembly of strain A649T consisted of 5.4 Mbp and 4826 coding genes.


Assuntos
Tetraodontiformes/microbiologia , Vibrionaceae/genética , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genoma Bacteriano/genética , Filogenia , Análise de Sequência de DNA , Vibrionaceae/classificação
9.
PeerJ ; 7: e6469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972241

RESUMO

The genus Plocamium encompasses seaweeds that are widely distributed throughout the world's oceans, with Plocamium brasiliense found along the tropical and subtropical coasts of the Western Atlantic. This wide distribution can lead to structured populations due to environmental differences (e.g., light levels or temperature), restricted gene flow, and the presence of cryptic species. Abiotic variation can also affect gene expression, which consequently leads to differences in the seaweeds protein profile. This study aimed to analyze the genetic and proteomic profiles of P. brasiliense sampled in two geographically distinct sites on the coastline of Rio de Janeiro state, Brazil: Arraial do Cabo (P1) and Búzios (P2). The genetic profiles of macroalgal specimens from these two sites were indistinguishable as assessed by the markers UPA/23S, rbcL, and COI-5P; however, the protein profiles varied significantly between populations from the two sites. At both sites the ribulose-1,5-biphosphate carboxylase/oxygenase was the most abundant protein found in P. brasiliense specimens. The number of phycobiliproteins differed between both sites with the highest numbers being found at P1, possibly due to water depth. The differences in proteomic profiles of the two nearly identical populations of P. brasiliense suggest that environmental parameters such as light availability and desiccation might induce distinct protein expression, probably as a result of the phenotypic plasticity within this population of seaweed.

10.
Environ Pollut ; 249: 295-304, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30901643

RESUMO

Unplanned oil spills during offshore oil production are a serious problem for the industry and the marine environment. Here we assess the biodegradation potential of marine microorganisms from three water depths in the Campos Basin (South Atlantic Ocean): (i) 5 m (surface), (ii) ∼80 m (chlorophyll maximum layer), and (iii) ∼1200 m (near the bottom). After incubating seawater samples with or without crude oil for 52 days, we used metagenomics and classic microbiology techniques to analyze microbial abundance and diversity, and measured physical-chemical parameters to better understand biodegradation processes. We observed increased microbial abundance and concomitant decreases in dissolved oxygen and hydrocarbon concentrations, indicating oil biodegradation in the three water depths treatments within approximately 27 days. An increase in metagenomic sequences of oil-degrading archaea, fungi, and bacteria (Alcanivorax, Alteromonas, Colwellia, Marinobacter, and Pseudomonas) accompanied by a significant increase in metagenomic sequences involved in the degradation of aromatic compounds indicate that crude oil promotes the growth of microorganisms with oil degradation potential. The abundance of genes involved in biodegrading benzene, toluene, ethylbenzene, xylene, alkanes, and poly-aromatic hydrocarbons peaked approximately 3 days after oil addition. All 12 novel metagenome-assembled genomes contained genes involved in hydrocarbon degradation, indicating the oil-degrading potential of planktonic microbes in the Campos Basin.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Metagenômica , Poluição por Petróleo/análise , Petróleo/metabolismo , Microbiologia da Água , Alcanos/metabolismo , Oceano Atlântico , Bactérias/metabolismo , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Metagenoma , Água do Mar/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-30533792

RESUMO

We report here the genome sequences of the novel isolates G62T and G98T from rhodoliths. The nearly complete genomes consisted of 4.7 Mbp (4,233 coding sequences [CDS]) for G62T and 4.5 Mbp (4,085 CDS) for G98T. Genomic taxonomy places these new genomes into 2 new species.

12.
PLoS One ; 11(11): e0165954, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832119

RESUMO

The red seaweed Laurencia dendroidea belongs to the Rhodophyta, a phylum of eukaryotic algae that is widely distributed across the oceans and that constitute an important source of bioactive specialized metabolites. Laurencia species have been studied since 1950 and were found to contain a plethora of specialized metabolites, mainly halogenated sesquiterpenes, diterpenes and triterpenes that possess a broad spectrum of pharmacological and ecological activities. The first committed step in the biosynthesis of triterpenes is the cyclization of 2,3-oxidosqualene, an enzymatic reaction carried out by oxidosqualene cyclases (OSCs), giving rise to a broad range of different compounds, such as the sterol precursors cycloartenol and lanosterol, or triterpene precursors such as cucurbitadienol and ß-amyrin. Here, we cloned and characterized the first OSC from a red seaweed. The OSC gene was identified through mining of a L. dendroidea transcriptome dataset and subsequently cloned and heterologously expressed in yeast for functional characterization, which indicated that the corresponding enzyme cyclizes 2,3-oxidosqualene to the sterol precursor cycloartenol. Accordingly, the gene was named L. dendroidea cycloartenol synthase (LdCAS). A phylogenetic analysis using OSCs genes from plants, fungi and algae revealed that LdCAS grouped together with OSCs from other red algae, suggesting that cycloartenol could be the common product of the OSC in red seaweeds. Furthermore, profiling of L. dendroidea revealed cholesterol as the major sterol accumulating in this species, implicating red seaweeds contain a 'hybrid' sterol synthesis pathway in which the phytosterol precursor cycloartenol is converted into the major animal sterol cholesterol.


Assuntos
Clonagem Molecular/métodos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Laurencia/enzimologia , Fitosteróis/metabolismo , Triterpenos/metabolismo , Expressão Gênica , Laurencia/genética , Laurencia/metabolismo , Filogenia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...